PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

- 1. What is the dimensional formula of $\frac{1}{\mu_0\epsilon_0}$ (where μ_0 is permeability and ϵ_0 is permittivity of free space).
 - (1) LT⁻¹
- (2) L^2T^{-2}
- (3) MLT⁻¹
- (4) ML^2T^{-2}

Answer (2)

$$Sol. \quad \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = C$$

$$\frac{1}{\mu_0 \varepsilon_0} = C^2$$

- 2. An equilateral prism is made of a material of refractive index $\sqrt{2}$. Find angle of incidence for minimum deviation of the light ray.
 - (1) 60°
- (2) 30°
- (3) 37°
- (4) 45°

Answer (4)

Sol.
$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$\frac{60^{\circ} + \delta_m}{2} = 45^{\circ}$$

$$\delta_m = 30^{\circ}$$

$$\delta_m = i + e - A$$

$$30 = 2i - 60$$

(i = e)

$$i = 45^{\circ}$$

3. A particle moves on a circular path of radius 1 m. Find its displacement when it moves from $A \rightarrow B \rightarrow A \rightarrow B$. Also its distance as it moves from $A \rightarrow B \rightarrow A \rightarrow B \rightarrow A$.

- (1) Distance = 2 m, displacement = 4π m
- (2) Distance = 2 m, displacement = 5π m
- (3) Distance = 4π m, displacement = 2 m
- (4) Distance = 5π m, displacement = 2 m

Answer (3)

Sol. Displacement = Shortest distance between find and initial positions = 2 m (One and half cycle)

Distance = Total path length covered

=
$$4\pi$$
 m (Two cycles)

 The moment of inertia of a ring of mass M and radius R about an axis passing through tangential point in the plane of ring is

(1)
$$\frac{5MR^2}{2}$$

(2)
$$\frac{3MR^2}{2}$$

(3)
$$\frac{4MR^2}{3}$$

(4)
$$\frac{2MR^2}{3}$$

Answer (2)

Sol. It
$$=\frac{MR^2}{2} + MR^2 = \frac{3MR^2}{2}$$

A block of mass m is suspended in a vertical plane with the help of two light strings as shown. Find the ratio of tensions

 T_1

- (1) 3

Answer (3)

Sol. $T_1 \cos 30^\circ = T_2 \cos 60^\circ$

$$\frac{T_1}{T_2} = \frac{\cos 60^{\circ}}{\cos 30^{\circ}} = \frac{1}{\sqrt{3}}$$

A disc of mass M and radius 2 m is hinged keeping axis horizontal. If angular acceleration of disc is $2rad/s^2$. Find moment of inertia

- F = 10 N
- (1) 10 kg m²
- (2) 5 kg m^2
- (3) 6 kg m^2
- (4) 20 kg m²

Answer (1)

Sol. $\tau = I \infty$

$$10 \times 2 = 21$$

 $I = 10 \text{ kg m}^2$

The figure shows the plates of a parallel plate capacitor with a separation 10 cm and charged to a potential difference V. Find the potential difference between B and

Answer (1)

Sol. V = E (10 cm)

$$V' = E (4 cm)$$

$$V' = \frac{2}{5}V$$

Binding energy per nucleon in ${}_{1}^{2}H$ is x and for ${}_{2}^{4}He$ is y. Find energy released in the given reaction

$$_{1}^{2}H+_{2}^{4}He \rightarrow _{2}^{4}He$$

- (1) 2x 2y
- (2) -4x + 4y
- (3) 4x 4y
- (4) 2y 4x

Answer (2)

Sol.
$$BE = 4y - (2x + 2x)$$

$$= 4y - 4x$$

Figure shows a uniformly charged ring having charge Q and 9. radius R. Find the distance from the centre on the axis of the ring where electric field is maximum

- (1) $R\sqrt{2}$
- (3) 2R
- (4) R

Answer (2)

$$Sol. \quad E = \frac{kQx}{\left(R^2 + x^2\right)^{3/2}}$$

$$\frac{dE}{dx} = 0$$

$$x = \frac{R}{\sqrt{2}}$$

10. Two identical drops of radius R and surface tension 'T' coalesce to form a bigger drop. The change in surface energy in this process is

(1)
$$4\pi R^2 T \left[1 - 2^{-\frac{1}{3}} \right]$$

(1)
$$4\pi R^2 T \left[1 - 2^{-\frac{1}{3}} \right]$$
 (2) $8\pi R^2 T \left[1 + 2^{\frac{1}{3}} \right]$

(3)
$$4\pi R^2 T \left[1 + 2^{\frac{1}{3}} \right]$$
 (4) $8\pi R^2 T \left[2^{-\frac{1}{3}} - 1 \right]$

(4)
$$8\pi R^2 T \left[2^{-\frac{1}{3}} - 1 \right]$$

Answer (4)

Sol. Volume of bigger drop =
$$\frac{4}{3}\pi R_1^3 = 2\left(\frac{4}{3}\pi R^3\right)$$

$$R_1 = R(2)^{\frac{1}{3}}$$

Initial energy = $(4\pi R^2 T) \times 2$

Final energy = $4\pi R^2(2)^{\frac{2}{3}}T$

- Two galvanometers G_1 and G_2 are having resistors $R_1 = 5\Omega$ and $R_2 = 7\Omega$, number of turns $N_1 = 21$, $N_2 = 15$, magnetic fields B_1 = 0.25 T, B_2 = 0.50 T and area of coil A_1 = 3.6 \times 10⁻³ cm² and $A_3 = 1.8 \times 10^{-3}$ cm². Find the ratio of their voltage sensitivity
- (3) $\frac{5}{7}$

Answer (1)

Sol.
$$\tau = NIAB = K\theta$$

$$\frac{\theta}{V} = \frac{\theta}{RI} = \frac{NAB}{IKR}$$

Ratio of voltage sensitivity =
$$\left(\frac{N_1 A_1 B_1}{N_2 A_2 B_2}\right) \frac{R_2}{R_1}$$

$$=\frac{21}{15}\times\frac{3.6}{1.8}\times\frac{0.25}{0.50}\times\frac{7}{5}$$

$$=\frac{49}{25}$$

- Match the List-I with the List-II
 - (i) Heat capacity
- (a) $J kg^{-1} K^{-1}$
- (ii) Specific heat capacity (b) $J K^{-1}$
- (iii) Latent heat
- (c) $W m^{-1} K^{-1}$
- (iv) Thermal conductivity (d) J kg⁻¹
- (1) (i)-(b), (ii)-(d), (iii)-(c), (iv)-(a)
- (2) (i)-(b), (ii)-(a), (iii)-(c), (iv)-(a)
- (3) (i)-(b), (ii)-(c), (iii)-(d), (iv)-(a)
- (4) (i)-(b), (ii)-(a), (iii)-(d), (iv)-(c)

Answer (4)

13. In a system of measurement, electric charge (Q), permeability (μ_0) and electric current (i) are considered as fundamental quantity. The dimension of linear momentum in this system is

(1)
$$Q^2 \mu_0^2 i$$

(2)
$$\lfloor Q\mu_0 i \rfloor$$

(3)
$$Q\mu_0i^2$$

(4)
$$Q^2 \mu_0 i$$

Answer (2)

Sol. Let
$$P \propto (Q)^a (\mu_0)^b (i)^a$$

$$\left\lfloor MLT^{-1} \right\rfloor = K \left[M^b L^b T^{a-2b} A^{a-2b+c} \right]$$

$$a = 1, b = 1, c = 1$$

14. Which of the following items (labelled i, ii, iii, iv and v) are true

When an ideal gas undergoes adiabatic process, (symbols have their usual meaning)

(i)
$$\Delta U = 0$$

(ii)
$$w = -\Delta U$$

(iv)
$$VT = Constant$$

(v)
$$W \alpha |T_2 - T_1|$$

Answer (2)

Sol.
$$\Delta Q = O$$

$$\Rightarrow W = -\Delta U$$
$$= -nC_V (T_2 - T_1)$$

15. A wave is travelling along a string. The wavelength (λ) of the wave is 7.5 m and amplitude is 2 cm. At t=0, there is a crest at x=0 and in 0.3 seconds it travels a distance of 12 cm in +ve x-direction. The equation of the wave is

(1)
$$2\sin\left(\frac{2\pi}{15}x + \frac{6\pi}{25}t\right)$$
 cm (2) $2\cos\left(\frac{4\pi}{15}x - \frac{8\pi}{75}t\right)$ cm

(3)
$$2\cos\left(\frac{4\pi}{15}x + \frac{6\pi}{25}t\right) \text{ cm}$$
 (4) $2\sin\left(\frac{4\pi}{15}x - \frac{8\pi}{75}t\right) \text{ cm}$

Answer (2)

Sol.
$$\lambda = 7.5$$

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{7.5} = \frac{4\pi}{15}$$

$$v = \frac{12}{0.3} = 40$$
 cm/s

$$\frac{\omega}{k} = 40 \text{ cm/s}$$

$$\omega = \frac{40}{100} \times \frac{4\pi}{15} = \frac{40\pi}{375} = \frac{8\pi}{75}$$

$$y = 2\cos\left(\frac{4\pi}{15}x - \frac{8\pi}{75}t\right) \text{ cm}$$

16. An equiconvex lens of radius $R = \frac{1}{6}$ m is having power P.

Another Bi convex lens of radii R_1 and R_2 is having same power P, then

(1)
$$R_1 = \frac{1}{9}$$
 m, $R_2 = \frac{1}{3}$ m (2) $R_1 = \frac{1}{6}$ m, $R_2 = \frac{1}{3}$ m

(3)
$$R_1 = \frac{1}{9} \text{m}, R_2 = \frac{1}{4} \text{m}$$
 (4) $R_1 = \frac{1}{4} \text{m}, R_2 = \frac{1}{5} \text{m}$

Answer (1)

Sol.
$$\frac{1}{f_1} = (\mu - 1)(\frac{2}{R}) = (\mu - 1)12$$

$$\frac{1}{f_2} = (\mu - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = (\mu - 1) 12$$

$$\frac{1}{R_1} + \frac{1}{R_2} = 12$$

17. The area of a solenoid is A, length is L, magnetic field inside is B_0 and the relative permeability of medium is 2. The energy stored due to the magnetic field is

$$(1) \quad \frac{B_0^2 A L}{2\mu_0}$$

$$(2) \quad \frac{B_0^2 A L}{4\mu_0}$$

(3)
$$\frac{4B_0^2AL}{\mu_0}$$

$$(4) \quad \frac{2B^2A}{\mu_0}$$

Answer (2)

Sol.
$$E = \frac{B^2}{2\mu} \times AL$$

$$=\frac{\textit{B}_{0}^{2}\textit{AL}}{4\mu_{0}}$$

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The radius of first Bohr orbit of Li^{2+} is $\frac{a_0}{X}$, where a_0 is the radius of the first Bohr orbit of H. Find X

Answer (3)

Sol.
$$r = a_0 \frac{n^2}{7}$$

For Li^{2+} is ground state n = 1 and $\angle Z = 3$

$$\Rightarrow r = a_0 \frac{\left(1\right)^2}{3} = \frac{a_0}{3}$$

The length of the string in 104 m when the tension in it isN. The length becomes 1.56 m when the tension in it isN. The natural length of the string is _____ m.

Answer (1)

Sol.
$$T = k(I - I_0)$$

 $\Rightarrow 5 = k(1.4 - I_0)$
 $\Rightarrow 7 = k(1.56 - I_0)$
 $\Rightarrow 7(1.4 - I_0) = 5(1.56 - I_0)$
 $I_0 = \frac{7(1.4) - 5(1.56)}{2} = 1 \text{ m}$

23. A concave mirror and a convex mirror of same focal length are given. A real object is placed in front of the mirror at a distance equal to half the focal length. The ratio of lateral magnification in the image produced by concave mirror to that produced by the convex mirror is

Answer (3)

Sol.
$$m = \frac{f}{f - u}$$

$$m_{\text{concave}} = \frac{-f}{-f - \left(-\frac{f}{2}\right)} = 2$$

$$m_{\text{convex}} = \frac{+f}{+f - \left(-\frac{f}{2}\right)} = \frac{2}{3}$$

$$\frac{m_{\text{concave}}}{m_{\text{convex}}} = 3$$

24.

25.

